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ON THE SUMMATION OF CERTAIN LEGENDRE SERIES
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SUMMARY

The purpose of this paper is to find some recurrence relations for sums of infinite series of the form
£ PH(cos8)t** ™ /(+m). This is achieved by transforming the sums into integrals and then using the recurrence
relations for these integrals.

1. Introduction

Recently, while discussing the prcblem of deformation of an elastic sphere
by internal digplacement dislocations, we [2] encountered infinite series of
the form LPg(cos 0)t™*™ /(L+m). Similar series also occur in problems of
deformation of an elastic sphere by certain stress distributions over its
surface, (e.g. [51). The purpose of this paper is to find some recurrence
relations for sums of such series. This is achieved by transforming the
sums into integrals and then using the recurrence relations for these in-
tegrals. The derived recurrence relations can be used to sum these in-
finite series for all positive integral values of m and n. Ben-Menahem
[1] has found similar recurrence relations for Legendre series with general
term P, (cos e)thm+l /L(Z+1). (£+2)...(d+m+1)]. These Legendre series can
also be summed by using the results derived in the present paper,

Recurrence relations for the Legendre series LPjp(cos e)tz'm/(l -m) and
oP} (cos 8)

L B a— ghem /€ tm) are also derived.

2. Dervivation of the recurvence relations

We define
£+m
s =F%d
m,n —£=[1 £+m

Pz(cos 0), (1)

where i1ti <1, m and n are arbitrary positive integers and Pﬁ(cos 8) is the
associated Legendre function of the first kind with the definition [7]

an.Z (cos 8)
Pf(cos8) = (sing) ——————— (2)
d(cos 8)

and where By (cos8) is the Legendre polynomial of degree £,
We know that

w|—

;)50 Py (cos G)tl = s (3)
(tlg1, 0 <8< 7
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where
1
= (1-2t cos 8 + tHT,
From equations (2) to (4), we obtain

(2n)! (sin®)" t

L Pf(cos8)tt=
b=n

n! 21'1 S2n+1
and so
- Pirm- ' . n ,n+m-1
2 PE(cos o)t +m-1 _ (2n). (sin@) t
f=n n! 2n S2n+1
Integrating both sides of equation (6) with respect to t, we find
l C
+m n+m-1
2 L)_ A dt
S m.n T— P{(cos 8) = (sin 9) e
(n+my1)
When m=n=0, we define
o ¢
SO,O :Z):;‘,lT B; (cos 8).
If we write .
m
van B S tZHfI
g s
then equation (7) can be written as
_ (2n)! . n
Sm,n - n (Sln@) Jn+m-1,n
n! 2
(ntm > 1}
Next we make use of the well-known relations L3, 4]
- 6
2n- + - m-1 1
Jm,n = cos @ anle-nInl m=-1,n * 2111'1-:11 m-2,n : * 2nr?1 ’
’ (2n-m)s2n-l
(m#2n,m » 1)
t2r1'~1
Jop,n = cOS® Ton1n T Jon-2n-1

: d
Jo.n =S t
S21'1+1
0

(2n-1)s-1

(n> 1)

(4)

(5)

(6)

(9

(10)

(11)

(12)

= t-cos® it 2%(n-1)(n-2)

= 1

(2n-1)(sin 0)2s™" -1 { +k§1 (2n-3)(2n-5).
__cose Bl 9% (n-1)(n-2)...(n-k)

' (2n-1)(sin 8)” {1 i )=: (2n-3)(2n-5)...(2n-2k-1) °

(n>1)

1

...(n-k) ( 2k
..(2n-2k-1)° \sine

——x
(sin 8)

(13)
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- f dt
S
° g+t 1+ )
_ s$-cos - cos
" log{ l-cos 86 } 1Og{s+cos -t } : (14)

From equations (10) to (14), we arrive at the following recurrence relations:
(t<1, 0<6<m)

_ 2m-1 m+n-1
Srn+1,r1 = cos® m-n Sm,n T Tm-n m-1,n
s n m+n-1 6 -
+(2n)! (sin®) t 4 _Q-nm , (15)
n! 2° (m-n)s®™! 2n-1
(m # n, minyl)
_o\t 2n-1
Sm-l,n = cos 6 Sn’n + (2n-1)sin® Sn'n_1 - ﬁn_'Z)_n__T (sin9)n <§t> s
(n-1)! 2 (16)
(n>1)
2n n
tmn T :1' )2 (sin®)” J; (17)
(n > 1)
s-cos 6+t _ l+cos 8
S10 log{ T 1-cos 8 } = log {s+cos 8-t } (18)

The recurrence relations (15) and (16) together with equations (17) and
(18) enable one to evaluate the infinite sums

) b4
S = & Pf(cos 8)t " /(f+m) for all It < 1 and for all positive integral
’ =n
values of m and n, including zero, excluding the case m=n=0. To evaluate
S0 02 28 defined in equation (8), we proceed as follows:

From equation (3) we have

5 p_ 1L
1}51 Pp (cos )t T T (19)
Integrating, we get
19
s -3lp 0) = S == at
0,0 =1 g (cos8) =} —57
- log {ﬁzt_%e_} _ (20)

To these, we add another relation of the same type which is sometimes
required, namely,
(2n+1)! (sine)
n! 2[1 S21'1+3

(tl <1, 0 <6 < @)

t%(1-1%). (21)

zE l+1)tf P} (cos 8) =
=n

This can be easily proved by a differentation of equation (5) with respect
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to t followed by simple algebraic operations.
We consider next the sum

- tl-m n
! =
Sm.n 1=§+1,€-m Py (cos 8)
o t% g
= X K P (cos 8). (22)
w=] K+m
(it € 1)

Using the following recurrence relation [61 for the Legendre functions
[with the necessary change due to different definition of P“( x)]

PE (x) = x Pi(x) + (r+tu) Vi-x® PE(x

b ) (23)

equation (22) can be reduced to

S'm.n = cos S'm-l,n+ (m+n~-1) sin® S'm_l'n_1
w -1
+ sin® I t° P (cos 8).
k=1 m+K-1
@>1, my 1) (24)

But from equation (5),

.-l -
E P (cos@) = (2n:2).  (sin6) 77
Kel m+K=1 (n-l)! 2n-1 Szn-l
- £ ¢4 Pl (cos @), (25)

£=0
(It)g 1, 0< 6 < 7

From equations (24) and (25), we obtain

-_ - ] l
S'm'n =cos® S, ¥ (mFn-l) sin€ 5'
oy . n ,n-m m~l p_ -
+ (2n 2).n_l (sm;])_1 t - sind ¥ 2-m+1 PE 1 (cos 8), (26)
(n-1)! 2 s £=0

n>1, m» 1, ItI £1, 0 <86 <7q)

Comparing equations (1) and (8) with (22), it is obvious that

Son = Son (27)
and so S'o,n can be found from equation (15) to (18) and (20). Further
o tl-m
S'm,o =l—n)i+1 T Py (cos 9) (28)
= -;—i—— (cos 8). (29)
k=1 K+m

Making use of the relation [6]

nPn(x) = (2n-1) x P

> (%) - (=1)P_ (x), (30)
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equation (29) reduces to

_ 2m-1 m-1

S'm,O - m cos 8 SIm-l,O " Tm S'm-2,0
1 - 1:l+2 - JE2+1
- - {=£_1"m Py (cos 8)-cos 6. £=ZIJH T Py (cos 9)}.

(m > 1)

Using equation (1), (15) to (18), this becomes

2m-1 m-1
1 = ! -— s
5 m,0 m cos 8 S m-1,0 m S m-2,0
m-1 f+1 m-2 442
- - tm{s-1+cos . ,tEom Py (cos 8) ";Eoﬂ'i Py (cos 6)} .

m>» 1, [tIg 1, 0<8 <)

Further, from equations (20) and (27), we have

_ 1+s-t cos®
S'O,o = -log {———————-—2 } .
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(33)

From equations (32) and (33), one can evaluate S'_ , for all integral values
of m. Therefore, from equations (26), (27), (32) and (33), S', 5 can be
evaluated for all Itl € 1 and for all positive integral values of m and n

including zero.
Lastly, let us consider the infinite sum

Lam 9P (cos 8)

Dm,n = 2);_‘:1 Ef+m o8 ?
(m+n > 1)
w i P (cos )
A

Using equations (1), (5) and the relation [6]
d PY(x)
(1-x") —5—= - vx B'(x) + +d) B (0,

it follows at once that

sing® D = (m-n) S -m cosB S
m,n m+l,n m,n
1 _ n+m
+ (2n)! (sin 6)“ (cos B-t) t
n! oh 52n+1
(m+n > 1)

From equation (20),
. 1
sin 8 Do,o = -cosH + < (cos 8-t).

From equations (37) and (38) and the recurrence relations for S

(34)

(36)

(37)

(38)

one

can find Dm o for all positive integral values of m and n including zero,
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Similarly, if
Ln 9P (cos 6)

D! = E t 39
ma o, A-m 28 ’ (39)
(m > 1)
it can be proved that
sing D' = m cos@ S - (m+n)s’ -t Pn(cos 8)
m,n m,n m-1,n m
m
+j——L (cos 8-t)t"™ (sin®)" _ (cos B-t) L t’Y'ij_}(cos 8),
n! g 2n+1 £=0
(m > 1) (40)
D! = D .
0,n 0,n (41)

Sums involving higher derivatives of Legendre functions can be handled
similarly.

3. Some explicit results

For ready reference, we give below the values of S , for m=0,1,2,3
and n=0, 1, 2: ’

. [(Equation (20)]

S, o [Equation (18)]

€ g-x+t
Sz,o = s-1 + x log j"ﬁ—} (x = cos ) (42)
_ 1 _§ _ S-x+t
83'0 = 3st 5 (1-s)+ (3x Nlo g{ Tox }

In general
m+1,0 J m,0
t
m
= g — dt (43)
0

This integral has been considered by Ben-Menahem [1] in some detail.
There it has been shown that

S ts—dt = h(t,x)s + P_(x) S i—t , (44)
where met _
h (t,%) = W__(x) E t Pe(x) - P (x) 2t W_ (x), (45)
=0 m k=0 -
Woa = LT P ) PG, (46)

From eguations (14), (43) and (44), we have

= h_(t,%)s-h_(0,%) + P_(x) 1og{s—£+i} . (47)

m+1,0

(m = 0)
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ySO 17 x+(t-x)/s
¥S,, = 1-(1-xt)/s

, ' (48
yS, | = x-iheH(1-2x%)f] + (1-x?) 1°g{ si}it} |

¥S, | = ~2+ 37+ L2 - 35 rxt(6x” -5)+17(1 -x" ) T 3x(1 %) 1og{ii—’§}

2 - —-—
Sy, = 1+x® . 2x(t-x) _ 1-xt
, 2 2 3
1-x s(1-x7) s
2 2
Sl = 2x (t-x){(1+x7) + (2x°-1)t-x
' 1-x2 s(1-x2) s3
2 xt{3-x2)-2x*+3x%-3 |, 1 2 2
S, 4 = —+ + — [xt(4x “-3)+1-2x"] (49)
’ 1-x s(1-x2%) s®
g -x(6-3x%) t(ax? -7x2+2)+x(2x *-5x 7 +4)
8,2 1-x2 s(1-x2)
+ i3 Ct(8x % -8x 2+1)-x(4x” ~3)]+3(1 -x°) 1og{ji—)f—;l}
S
where
X = cosB, y = sin® = 1-x2 ,
(50)
tlg 1, 0<86<m,
Further
1-s 1+s-tx
! = - + — - —_——
Sl’0 X n x log { 5 }
yS' = 2x%-1 + ;—{1-2x2+xt} - (1-x2) log { ﬁf’zi‘-} (51)
2
gt -y 37X +t—x{ 2 +1_}
1.2 1-x2 S 1-x2 s?
4, Rewmarks
We may add here that by using the generating function [6]
! =T c)a", (52)

(1-2at+a? n=0 "

for the Gegenbauer polynomials and following the method applied in this
paper, one can find recurrence relations for series involving Gegenbauer
polynomials similar to those obtained in the present paper for sums of
Legendre functions.
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